Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs.
نویسندگان
چکیده
Tregs are important mediators of immune tolerance to self antigens, and it has been suggested that Treg inactivation may cause autoimmune disease. Therefore, immunotherapy approaches that aim to restore or expand autoantigen-specific Treg activity might be beneficial for the treatment of autoimmune disease. Here we report that Treg-mediated suppression of autoimmune disease can be achieved in vivo by taking advantage of the ability of the liver to promote immune tolerance. Expression of the neural autoantigen myelin basic protein (MBP) in the liver was accomplished stably in liver-specific MBP transgenic mice and transiently using gene transfer to liver cells in vivo. Such ectopic MBP expression induced protection from autoimmune neuroinflammation in a mouse model of multiple sclerosis. Protection from autoimmunity was mediated by MBP-specific CD4+CD25+Foxp3+ Tregs, as demonstrated by the ability of these cells to prevent disease when adoptively transferred into nontransgenic mice and to suppress conventional CD4+CD25- T cell proliferation after antigen-specific stimulation with MBP in vitro. The generation of MBP-specific CD4+CD25+Foxp3+ Tregs in vivo depended on expression of MBP in the liver, but not in skin, and occurred by TGF-beta-dependent peripheral conversion from conventional non-Tregs. Our findings indicate that autoantigen expression in the liver may generate autoantigen-specific Tregs. Thus, targeting of autoantigens to hepatocytes may be a novel approach to prevention or treatment of autoimmune diseases.
منابع مشابه
Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice.
BACKGROUND & AIMS It is well-known that the liver can induce immune tolerance, yet this knowledge could, thus far, not be translated into effective treatments for autoimmune diseases. We have previously shown that liver sinusoidal endothelial cells (LSECs) could substantially contribute to hepatic tolerance through their ability to induce CD4+ Foxp3+ regulatory T cells (Tregs). Here, we explore...
متن کاملLiver Damage and Mortality in a Male Lewis Rat of Experimental Autoimmune Encephalomyelitis
Background and Objectives: Multiple sclerosis is an inflammatory disease of the central nervous system. This is due to migration of peripherally activated lymphocytes to central nervous system leading to inflammatory lesions. However, liver has an anti-inflammatory microenvironment. Myelin expression in the liver of transgenic mice suppresses inflammatory lesions within central nervous system. ...
متن کاملO 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملβ-Cell–Specific IL-2 Therapy Increases Islet Foxp3+Treg and Suppresses Type 1 Diabetes in NOD Mice
Interleukin-2 (IL-2) is a critical cytokine for the homeostasis and function of forkhead box p3-expressing regulatory T cells (Foxp3(+)Tregs). Dysregulation of the IL-2-IL-2 receptor axis is associated with aberrant Foxp3(+)Tregs and T cell-mediated autoimmune diseases such as type 1 diabetes. Treatment with recombinant IL-2 has been reported to enhance Foxp3(+)Tregs and suppress different mode...
متن کاملA self-reactive TCR drives the development of Foxp3+ regulatory T cells that prevent autoimmune disease.
Although Foxp3(+) regulatory T cells (Tregs) are thought to express autoreactive TCRs, it is not clear how individual TCRs influence Treg development, phenotype, and function in vivo. We have generated TCR transgenic mice (termed SFZ70 mice) using Tcra and Tcrb genes cloned from an autoreactive CD4(+) T cell isolated from a Treg-deficient scurfy mouse. The SFZ70 TCR recognizes a cutaneous autoa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 118 10 شماره
صفحات -
تاریخ انتشار 2008